
Lecture 16

Waves in Layered Media

Waves in layered media is an important topic in electromagnetics. Many media can be
approximated by planarly layered media. For instance, the propagation of radio wave on the
earth surface was of interest and first tackled by Sommerfeld in 1909 [121]. The earth can be
approximated by planarly layered media to capture the important physics behind the wave
propagation. For instance, many geophysics problems can be understood by studying waves
in layered media. Many microwave components are made by planarly layered structures such
as microstrip and coplanar waveguides. Layered media are also important in optics: they can
be used to make optical filters such as Fabry-Perot filters. As technologies and fabrication
techniques become better, there is an increasing need to understand the interaction of waves
with layered structures or laminated materials.

16.1 Waves in Layered Media

Figure 16.1: Waves in layered media. A wave entering the medium from above can be
multiply reflected before emerging from the top again or transmitted to the bottom-most
medium.
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16.1.1 Generalized Reflection Coefficient for Layered Media

Figure 16.2: The equivalence of a layered medium problem to a transmission line problem.
This equivalence is possible even for oblique incidence. For normal incidence, the wave
impedance becomes intrinsic impedances (courtesy of J.A. Kong, Electromagnetic Wave
Theory).

Because of the homomorphism between the transmission line problem and the plane-wave
reflection by interfaces, we will exploit the simplicity of the transmission line theory to arrive
at formulas for plane wave reflection by layered media. We can capitalize on using the multi-
section transmission line formulas for generalized reflection coefficient, which is

Γ̃12 =
Γ12 + Γ̃23e

−2jβ2l2

1 + Γ12Γ̃23e−2jβ2l2
(16.1.1)

In the above, Γ12 is the local reflection at the 1,2 junction, whereas Γ̃ij are the generalized

reflection coefficient at the i, j interface. For instance, Γ̃12 includes multiple reflections from
behind the 1,2 junction. It can be used to study electromagnetic waves in layered media
shown in Figures 16.1 and 16.2.

Using the result from the multi-junction transmission line, by analogy we can write down
the generalized reflection coefficient for a layered medium with an incident wave at the 1,2
interface, including multiple reflections from behind the interface. We do the following re-
placements: Γ12 → R12, Γ̃23 → R̃23, Γ̃12 → R̃12, and β2 → β2z. Then we have

R̃12 =
R12 + R̃23e

−2jβ2zl2

1 +R12R̃23e−2jβ2zl2
(16.1.2)
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where R12 is the local Fresnel reflection coefficient and R̃ij is the generalized reflection coef-
ficient at the i, j interface. Here, l2 is now the thickness of the region 2. In the above, we
assume that the wave is incident from medium (region) 1 which is semi-infinite, the general-
ized reflection coefficient R̃12 above is defined at the media 1 and 2 interface. It is assumed
that there are multiple reflections coming from the right of the 2,3 interface, so that the 2,3
reflection coefficient is the generalized reflection coefficient R̃23.

Figure 16.2 shows the case of a normally incident wave into a layered media. For this
case, the wave impedance becomes the intrinsic impedance of homogeneous space.

16.1.2 Ray Series Interpretation of Generalized Reflection Coeffi-
cient

Figure 16.3: The expression of the generalized reflection coefficient into a ray series.
Here, l2 = d2 − d1 is the thickness of the slab (courtesy of [122]).

For simplicity, we will assume that R̃23 = R23 in this section. By manipulation, one can con-
vert the generalized reflection coefficient R̃12 into a form that has a ray physics interpretation.
By adding and subtracting the term

R2
12R23e

−2jβ2zl2

on the numerator of (16.1.2), and rearranging terms, it can be shown to become

R̃12 = R12 +
R23e

−2jβ2zl2(1−R2
12)

1 +R12R23e−2jβ2zl2
(16.1.3)

By using the fact that R12 = −R21 and that Tij = 1 +Rij , the above can be rewritten as

R̃12 = R12 +
T12T21R23e

−2jβ2zl2

1 +R12R23e−2jβ2zl2
(16.1.4)

Then using the fact that (1− x)−1 = 1 + x+ x2 + . . .+, the above can be rewritten as

R̃12 = R12 + T12R23T21e
−2jβ2zl2 + T12R

2
23R21T21e

−4jβ2zl2 + · · · . (16.1.5)

The above allows us to elucidate the physics of each of the terms. The first term in the
above is just the result of a single reflection off the first interface. The n-th term above is the
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consequence of the n-th reflection from the three-layer medium (see Figure 16.3). Hence, the
expansion of (16.1.2) into (16.1.5) renders a lucid physical interpretation for the generalized
reflection coefficient. Consequently, the series in (16.1.5) can be thought of as a ray series or
a geometrical optics series. It is the consequence of multiple reflections and transmissions in
region 2 of the three-layer medium. It is also the consequence of expanding the denominator
of the second term in (16.1.4). Hence, the denominator of the second term in (16.1.4) can be
physically interpreted as a consequence of multiple reflections within region 2.

16.2 Phase Velocity and Group Velocity

Now that we know how a medium can be frequency dispersive in a complicated fashion as
in the Drude-Lorentz-Sommerfeld (DLS) model, we are ready to investigate the difference
between the phase velocity and the group velocity. In this course, we will use k and β
interchangeably to represent wavenumber.

16.2.1 Phase Velocity

The phase velocity is the velocity of the phase of a wave. It is only defined for a mono-
chromatic signal (also called time-harmonic, CW (constant wave), or sinusoidal signal) at one
given frequency. Given a sinusoidal wave signal, e.g., the voltage signal on a transmission
line, using phasor technique, its representation in the time domain can be easily found and
take the form

V (z, t) = V0 cos(ωt− kz + α)

= V0 cos
[
k
(ω
k
t− z

)
+ α

]
(16.2.1)

This sinusoidal signal moves with a velocity

vph =
ω

k
(16.2.2)

where, for example, k = ω
√
µε, inside a simple coax. Hence,

vph = 1/
√
µε (16.2.3)

But a dielectric medium can be frequency dispersive, or ε(ω) is not a constant but a function
of ω as has been shown with the Drude-Lorentz-Sommerfeld model. Therefore, signals with
different ω’s will travel with different phase velocities.

More bizarre still, what if the coax is filled with a plasma medium where

ε = ε0

(
1− ωp

2

ω2

)
(16.2.4)

Then, ε < ε0 always meaning that the phase velocity given by (16.2.3) can be larger than
the velocity of light in vacuum (assuming µ = µ0). Also, ε = 0 when ω = ωp, implying that
k = 0; then in accordance to (16.2.2), vph =∞. These ludicrous observations can be justified



Waves in Layered Media 175

or understood only if we can show that information can only be sent by using a wave packet.1

The same goes for energy which can only be sent by wave packets, but not by CW signal;
only in this manner can a finite amount of energy be sent. Therefore, it is prudent for us
to study the velocity of a wave packet which is not a mono-chromatic signal. These wave
packets can only travel at the group velocity as shall be shown, which is always less than the
velocity of light.

16.2.2 Group Velocity

Figure 16.4: A Gaussian wave packet can be thought of as a linear superposition of
monochromatic waves of slightly different frequencies. If one Fourier transforms the
above signal, it will be a narrow-band signal centered about certain ω0 (courtesy of
Wikimedia [123]).

Now, consider a narrow band wave packet as shown in Figure 16.4. It cannot be mono-
chromatic, but can be written as a linear superposition of many frequencies. One way to
express this is to write this wave packet as an integral in terms of Fourier transform, or a
summation over many frequencies, namely2

V (z, t) =

∞�

−∞

dωV˜ (z, ω)ejωt (16.2.5)

1In information theory, according to Shannon, the basic unit of information is a bit, which can only be
sent by a digital signal, or a wave packet.

2The Fourier transform technique is akin to the phasor technique, but different. For simplicity, we will use
V˜ (z, ω) to represent the Fourier transform of V (z, t).
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To make V (z, t) be related to a traveling wave, we assume that V˜ (z, ω) is the solution to the

one-dimensional Helmholtz equation3

d2

dz2
V˜ (z, ω) + k2(ω)V˜ (z, ω) = 0 (16.2.6)

To derive this equation, one can easily extend the derivation in Section 7.2 to a dispersive
medium where V (z, ω) = Ex(z, ω). Alternatively, one can generalize the derivation in Section
11.2 to the case of dispersive transmission lines. For instance, when the co-axial transmission
line is filled with a dispersive material, then k2 = ω2µ0ε(ω). Thus, upon solving the above
equation, one obtains that V (z, ω) = V0(ω)e−jkz, and

V (z, t) =

∞�

−∞

dωV0(ω)ej(ωt−kz) (16.2.7)

In the above, V (z, t) is real value. As such, the negative frequency components of the above
integral have to be complex conjugate of the positive frequency components. We can also
rewrite the above as

V (z, t) =

� 0

−∞
dωV0(ω)ej(ωt−kz) +

� ∞
0

dωV0(ω)ej(ωt−kz) (16.2.8)

Using the fact that V0(−ω) = V ∗0 (ω) and that k(−ω) = k∗(ω), we can write the above as sum
over only the +ω part of the integral and take twice the real part of the integral.

V (z, t) = 2<e
∞�

0

dωV0(ω)ej(ωt−kz) (16.2.9)

In the general case, k is a complicated function of ω as shown in Figure 16.5.

3In this notes, we will use k and β interchangeably for wavenumber. The transmission line community
tends to use β while the optics community uses k.
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Figure 16.5: A typical frequency dependent k(ω) albeit the frequency dependence can
be more complicated than shown here.

Since this is a wave packet, we assume that V0(ω) is narrow band centered about a
frequency ω0, the carrier frequency as shown in Figure 16.6. Therefore, when the integral in
(16.2.7) is performed, we need only sum over a narrow range of frequencies in the vicinity of
ω0.

Figure 16.6: The frequency spectrum of V0(ω) which is the Fourier transform of V0(t).

Henceforth, we can approximate the integrand in the vicinity of ω = ω0, in particular,
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k(ω) by Taylor series expansion, and let

k(ω) ∼= k(ω0) + (ω − ω0)
dk(ω0)

dω
+

1

2
(ω − ω0)2 d

2k(ω0)

dω2
+ · · · (16.2.10)

Since we need to integrate over ω ≈ ω0, we can substitute (16.2.10) into (16.2.9) and
rewrite it as

V (z, t) ∼= 2<e

e
j[ω0t−k(ω0)z]

∞�

0

dωV0(ω)ej(ω−ω0)te−j(ω−ω0) dkdω z

︸ ︷︷ ︸
F(t− dk

dω z)

 (16.2.11)

where more specifically,

F

(
t− dk

dω
z

)
=

∞�

0

dωV0(ω)ej(ω−ω0)te−j(ω−ω0) dkdω z (16.2.12)

It can be seen that the above integral now involves the integral summation over a small range
of ω in the vicinity of ω0. By a change of variable by letting Ω = ω − ω0, it becomes

F

(
t− dk

dω
z

)
=

� +∆

−∆

dΩV0(Ω + ω0)ejΩ(t− dk
dω z) (16.2.13)

When Ω ranges from −∆ to +∆ in the above integral, the value of ω ranges from ω0 −∆ to
ω0 + ∆. It is assumed that outside this range of ω, V0(ω) is sufficiently small so that its value
can be ignored.

The above itself is a Fourier transform integral that involves only the low frequencies of

the Fourier spectrum where ejΩ(t− dk
dω z) is evaluated over small Ω values. Hence, F is a slowly

varying function. Moreover, this function F moves with a velocity

vg =
dω

dk
(16.2.14)

Here, F (t− z
vg

) in fact is the velocity of the envelope in Figure 16.4. In (16.2.11), the envelope

function F (t− z
vg

) is multiplied by the rapidly varying function

ej[ω0t−k(ω0)z] (16.2.15)

before one takes the real part of the entire function. Hence, this rapidly varying part represents
the rapidly varying carrier frequency shown in Figure 16.4. More importantly, this carrier,
the rapidly varying part of the signal, moves with the velocity

vph =
ω0

k(ω0)
(16.2.16)

which is the phase velocity.
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16.3 Wave Guidance in a Layered Media

Now that we have understood phase and group velocity, we are at ease with studying the
propagation of a guided wave in a layered medium. We have seen that in the case of a
surface plasmonic resonance, the wave is guided by an interface because the Fresnel reflection
coefficient becomes infinite. This physically means that a reflected wave exists even if an
incident wave is absent or vanishingly small. This condition can be used to find a guided
mode in a layered medium, namely, to find the condition under which the generalized reflection
coefficient (16.1.2) will become infinite.4

16.3.1 Transverse Resonance Condition

Therefore, to have a guided mode exist in a layered medium due to multiple bounces, the
generalized reflection coefficient becomes infinite, the denominator of (16.1.2) is zero, or that

1 +R12R̃23e
−2jβ2zl2 = 0 (16.3.1)

where t is the thickness of the dielectric slab. Since R12 = −R21, the above can be written as

1 = R21R̃23e
−2jβ2zl2 (16.3.2)

The above has the physical meaning that the wave, after going through two reflections at
the two interfaces, 21, and 23 interfaces, which are R21 and R̃23, plus a phase delay given
by e−2jβ2zl2 , becomes itself again. This is also known as the transverse resonance condition.
When specialized to the case of a dielectric slab with two interfaces and three regions, the
above becomes

1 = R21R23e
−2jβ2zl2 (16.3.3)

The above can be generalized to finding the guided mode in a general layered medium. It
can also be specialized to finding the guided mode of a dielectric slab.

4As mentioned previously in Section 15.1.1, this is equivalent to finding a solution to a problem with no
driving term (forcing function), or finding the homogeneous solution to an ordinary differential equation or
partial differential equation. It is also equivalent to finding the null space solution of a matrix equation.
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